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This paper is concerned with the stability of motion of a linear system with delay. The
delay n(t) is homogeneous to a Markov random process. Sufficient conditions of asymp-
totic stability are dednced from the probability of the unperturbed motion of that system.
The problem is solved by the method of a Liapunov function [1] taking inte consideration
the circumstances due to the random character of the delay.

1. Let the equations of the disturbed motion have the form

é%tiﬂ = Az (t) + Bz (t —n (t) 1.n

Here x = { %, ..., x,} is a n-dimensional vector of the phase coordinates of the system;
A, B are constant n x n matrices; 7(t) is a purely discontinuous Markov random process
[2] whereupon the quantity 7(t) can take values of the interval [o,5],5>0.
Let us assume that the statistical properties of the process 7(¢) are given by the changing
probability P (¢, 7, @), which has the Expansion ([2], p. 231)
Pin() =a 0STTEMO) =a} =1 —q@1t+0(t) (2
Pin@<B n@)+e¢|n( =a} =1—¢q( Bt +o@® .3
Here P} 4|B} is the conditional probability of the event 4; o {t) is an infinitely small
number of an order of smallness larger than ¢ when ¢+ Q.
The functions g{a), g{a, B) are known continuous functions of the parameter a,
whereupon
g, B) =q@ tor p>h, q(a,f) =0 for pT0
0 <q(w) << g =const (1.4)
We shall limit curselves to the consideration of two cases: 1. The function 7(a, B) has

a continuous pla, )
8

g B =\p@ Ba
9

2. The function 5(t) can take a finite number of values irh,..., 7},} &[0, 41 whereupon
the probability p,, () of the changes from a condition 7, into a condition 7 in the time ¢
is determined by Fgs.
py; () =t +o(t) (og; = comst; i==J; Li=1,...,1
As it is known [ 2], under those assumptions it can be assumed that almost all the
realizations n{w, t) of the process n{t) are step functions. We shall assume furthermore
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that they are continuous on the right.

Let the initial conditions at the instant ¢ = 0, which determine the motion for ¢>,0, be
given in the form of a segment of the trajectory z, (Oy) (—h < ¥, < 0) and the value
n{(0) = n, €[ 0, h]. These conditions and Egs. (1.1) determine the distribution of the ran-
dom vector {x(¢), n(¢) } for t > 0 independently from the values x(7) for 7< t ~ A and
(1) for T < &

Therefore in agreement with the concept considered in [3], in order to examine an
element of the realized trajectory it is expedient to consider the segment z (0, t 4 )
for — A<V <O

Thus the initial conditions {Z ('ﬂo)v 1o} and Egs. (1.1) generate a random process
which can be interpreted easily as a bunch of realizations of the motion, corresponding to
all possible realizations of n{w, ¢t).

Whereupon it can be considered that each realization {xlw, ?), 7w, t) } of the pro-
cess {x(t), 7 (¢) } satisfies Eq.

Jim 2SR 0D — Az (0, 4) + Bz (0, t—n (o, 1)

The random process x(¢), determined in that manner will be denoted by the symbol
z (x, (ﬁo), Ty, !),and the realizations of that process by the symbol z (0, Zg (90),
Nos £).

2. For stochastic systems with a delay we may introduce definitions of the stability
according to the probability, which generalize the definitions of Liapunov as it was done
in [4] for the usual stochastic equations. Let us point out that the questions of the
stability of usual stochastic equations were considered in [5 and 6] and others. The
stability problem for systems with random delay has been considered by Lidskii [7].

Let us introduce for the completion of the exposition a few definitions analogous to
the corresponding ideas of paper [7].

Let us denote by the symbol

[z (0, x4 (Bg), Moy ¢ +O]|P =
=sup {|z; (e, To (), e t +B ], i =1,..., 0 —h<LI<LO0}
Definition 2.1. The solution x = 0 of the system (1.1) is probably stable, if for any

arbitrary small numbers € > 0, p > 0 one may find a number §> 0, such that for any
motion of the system (1.1) the following inequality is satisfied:

P {[supls (0, 2) (8), n, ¢ + HIVT ez, @)<Y >1—p (g

If, furthermore, for any number A > 0, ¢ > O and any arbitrary initial conditions
{xo (9, 170} one may find a number T > 0, such that

p {[tiqu [z (©, 2o (80), M, £+ B[P <1} >1—9¢

then the solution x = 0 is probably asymptotically stable.
For stochastic systems with a delay, we may develop a stability theory analogous to
Liapunov's second method. Particularly the following statement is valid.

(2.2)

Theorem 2.1, If for Eqs. (1.1) there is a functional W{x (D, r,] positive definite for
all e=[0, 4] and having an infinite ly small upper limit uniformly with respect to 7 and
the quantity

— AM (W}
Altlﬂo At
= Tﬁi % [M{W [x(xo (00)1 N, At)y 7](710: At)] Ixo (ﬁJ)1 "1(0) = 7]0}—'
At—>+0

— W [y (o), Mol]
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is negative definite,then the solution x = 0 of the system (1.1) is probably asymptotically
stable.

Here M{1P| B} is the conditional mathematical expectation of the quantity {; the
expression Tim (AM { W } /A¢) represents the averaged higher derivative of the functional
w{x (), n] on the basis of the system (1.1) and satisfies the inequality

At—+0
where lim (A W/At) is computed for a fixed value of 7,

h
Iim AM{W}<1 ( ) +3{W[x<ﬁ), Bl —W [z (8), nl}dez (1, B) (.9

Tha et mac oo tha noao
iae p?ﬁﬁ{ of J‘ua statement is made uluus the same luut:s as tne proocr o

ding theorem for stochastic systems without delay [4] as long as the process has Markov
properties in the space of the elements of the trajectory {x (w, t+ §), 7 (@, )}, ¢ &=
[0, 4]. Let us note that Theorem (2.1) remains also valid when the functional wlx(9), 17]
has first order discontinuities in 7.
Together with the system (1.1) let us consider Eqs.
dz(t) | dt = Az () + Bz (t — ) (2.4)
where £ is a constant delay, £ & [0, h]. We shall denote the solution of the system (2.4)
for a fixed value of the delay £ by the symbol
T (zo (’6‘0), g, t + ﬂ)o
Let for some value = £°, the undisturbed motion x = 0 of the system
dz(t) /dt = Az (t) + Bz (t — E°) (2.5)
be stable, and assume that for any motion of Eqs. (2.5) there are constants @ > 0, B 1>0
such that the inequality

| z (2o (Og), &% t +8)° || M < B, “ zy (O) || Mee! (2.6)

[ 2PN ) (P
1 1in =4 LUKI'CBPUH"

is valid,
It is then simple to show that fort ¢4 > 24 the relation

1 2 (2o (to + Bo)y 6%t + 0 || O < Byl 7o (o + Bo) | @ exp (—a (£ — L))
where
lz(@ +0)|| ®=sup {zi ¢ +9), i =1,..., n; =2k ¥ <0}
By, =B, (1 4 ¢
is satisfied for the trajectories of the system (2.5).
It is known that for that condition we can construct a functional V[ x (3)] satisfying, on
the trajectories of the system (2.5), the inequalities [9]

alle @ eV e @< |l z @@

fim (53] <—clz (@)™ 2.7
At—+0 £°

[V Iz (8] —V i @] |l z” (8) — 2’ (B
where ¢4 to ¢, are positive constants. The functional V[x ()] can be chosen in the form
teb2h T .
Vg @)=\ e, & v [ dr+

to
Fsup{fza, (80, B, T4 0P| t<v<to+2h4T} P

1
t()>2h, T—:—a— IHZBZ
3. We shall show sufficient conditions limiting the random delay 7 (s) and for which the
stability of the system (2.5) and the property (2.6) assure the asymptotic stability according
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to the probability of the unperturbed motion of Egs. (1.1). For that purpose we shall take
some sufficiently small number y > 0 and we shall consider the functional wix(}), 7}
determined by Egs. [8] ; - 0. 11
Vix®) for n—8 <y, 00,
Wz (9), nl= 2v [x (#)] for |n— %>, ne[0,h] (3.1)

The functional W{x (), n] is obviously positive definite for all 7 &[0, 4] and
accepts an infinitely small upper limit uniformly in 5. We shall estimate the quantity
Tim AMiwl/de) along the trajectories of the system (1.1). Let us consider for 5> 24,
on the time interval (to, ty~+ At], the trajectories of the systems (1.1} and (2.4) such
that the initial curves x, (¢y + ﬁo) coincide on the interval [‘o -~ 24, zo].

Then in agreement with the inequality (2.3) we have the estimates

o A i () Ly g0 daa o, B
. Ali}-glf—o At < Ail-?-l{-() ( At >'ﬂ° + [xo ( n)] i 3___;50 >y o (n ) {3.2)

for
M) =1 0 — [ <p M0 = (0B, 2 (fo + ) = 2o (80
Here lim (AV/A ) n® is computed on the basis of the system (2.4) for a fixed value
&= 1. Let us estimate this quantity. We have

iv— [AV w— AV
fim (&Y fim (37
Jim (F7) < Jm () +
b i VI, ot At 87V [ (o (00, B o AL OF)
At—t0
< Im (S7) 4 ol (@0 (B), W%, b+ At 4 9)°—
Atrto At zo H ] ¥
— 2 (2o (B0), &°, to + AL L+ 9 (3.9

For the system (2.4) we can get a constant K > 0 such, that the following inequality is
valid:

[z (zo (Bo), M, 2o + BE +8)° — z (2, (B), £ L+ AL 9)°|E <

K|z (B [® | 0° — 8 [ < Kv | 7 (8) @ (3.4)
Taking (2.7) and (3.4) into consideration, we get for the quantity (3.2) for l r,°- £° | <
<y, the following estimate:
Tim AM {W}
at—to Ot

L [—es+ Kyeg + 301 (0°)] | 2o (Bn) U(zh)

[Q:(n) = deg (1°, B))

f s——F.S >y (3.5)
By an analogous reasoning when | 7° — £°| 3,y we can get the inequality

m S 1 20+ 2Khes— 102 (1)1 20 (B0) [

At—>40
(0:(n7) = ls_{g L B) o

Now for an asymptotic stability according to the, probability of the system (1.1) it is
sufficient to require that the following conditions be satisfied:
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on 2 (Kheg—
T< 21«4 1 () <o To; ? Q2(n°) > —(——Z——q’) (3.7)

Thus the following statement is proven

Theorem 3.1. If the system (2.5) is stable, and the condition (2.6) is satisfied for
some fixed value of the delay £°= £, then we can find some positive constants N, N,
such, that when the conditions

Q (0 <N, for [° =<y, [0, k]
QM) >N, for |n°—E[>7, & [0, Al (3.8)

are satisfied, the motion x = 0 of the system (1.1) is probably asymptotically stable.

Note 3.1. The probability meaning of the quantities @, (7°) and Q,(%°) is discemed
from the equalities

P{n@t+A) —EI>rIm@O =07 —8 <7 =Q (YAt +o0 (AL
P{In(t+At)—§°l<7]n(t) =0 [ =8| >11= 0, (M) At +0o(A?)

which are consequences of (3.5) and (3.6). Consequently, the proven theorem means that
random changes in the delay cannot affect a sufficiently strong system atability if
the probability of a change from small values of the delay to large ones is small during
the time At¢, and if the probability of the opposite changes is sufficiently large.

The author thanks N.N. Krasovskii for his valuable comments.
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