
ON THE SlrABILITY IN FIRST APPROXIMATION OF 

SY!iXEMS WITH ~A~~O~ LiAC 

PMM Vol. 31, NP. 9, f96?, pp. 447-452 

~ I.Ia. KATS 
(Svtrdlovsk) 

Rscaived December 20, 1966 

This paper is concerned with the etability of motion of R linaar system with delay. The 
delay q(t) is homogeneous to a Markov random process. Sufficient conditions of aaymp- 
totic stability are deduced from the p~babili~ of the unperturbed motion of that system. 
The problem is solved by the method of E Liepnnov function [l] taking into consideration 
the circumstances due to the random character of the delay. 

I. Let the equations of the disturbed motion have the form 

‘2 = Ax (C) + B.T (t - “‘1 (t)) (1.1) 

Here x = 1 x1 .*., x, I is a s-dimensional vector of the phase coordinates of the syetem; 

A, B are constant n x n matrices; q(t) is a purely discontinuous Markov random process 
[Z] whereupon the qaautity TV can take values of the interval [0, Al, h > 0. 

Let us assume that the etatistical properties of the process rl(t) are given by the changing 
probability P (4, rl, a), which has.the Expsnaion (121, p. 2311 

P (q (r) = a, 0 < ‘G < t 1 q (b) = a> = 1 - Q (a) t -/- 0 (t) (1.2) 

p I17 (G < B, rl (t> #a I q (0) = al = 1 - Q 6% (9 t $- 0 (t) (1.3) 

Here P { A/B 1 is th e conditional probability of the event fl; o (t) is au infinitely small 
number of an order of smallness larger than f when t + 0. 

The functions q(a). qfa, 6) are known continuous functions of tbe parameter a, 
whereupon 

Q (a, B) == (1 (a) for fi > h, q (a, B> = 0 for I3 < 0 

0 < q (a) < q = const (1.4) 

We shall limit ourselves to the consideration of two cases: 1. The function ~(a, fl) has 
a continnous pffx , /3 1 

.(r(u, P) +a, P)dP 
0 

2. The function q(t) can take a finite number of values 1 ql,..., ~~1 ES f.0, hl whereupon 
the probability pr, (I) of the changes from a condition i, into a condition r~, .in the time t 
is determined by Eqs. 

pij (t) = azjt + 0 (t) (aij = con&; i+j; i, j = 1,. - ., r) 

As it is known [2], under those assumptions it can be assumed that almost all the 
realizations rl(o, tf of the process ‘7(f) are step functions. We shall assume furthermore 

478 



Stability in first approximation of systems with random lag 479 

that they are continuous on the right. 

Let the initial conditions at the instant t = 0, which determine the motion for t 30, be 

given in the form of a segment of the trajectory s+, (6,) (--h< 6, < 0) and the value 

?-/(O)=‘lo E[O, hl. Th ese conditions and Eqs. (1.1) determine the distribution of the ran- 

dom vector { x(t), q(t) 1 for t > 0 independently from the values 1~ ( 7) for ‘r< t - h and 

r](T) for7< t. 
T!lerefore in agreement with the concept considered in [3], in order to examine an 

element of the realized trajectory it is expedient to consider the segment z (0, t + 6) 

for - h < 6 < 0. 
Thus the initial conditions (30 (60)~ Q} and Eqs. (1.1) generate a random process 

which can be interpreted easily as a bunch of realizations of the plotion, corresponding to 

all possible realizations of ~(0, t). 
Whereupon it can be considered that each realization 1 z(o) t), v (0, t) 1 of the pro- 

cess \ z(t), T)(t) 1 satisfies Eq. 

lim ~(0, ‘+At)--z(m, ‘) 
At 

= Ax (0, t) 4 Bz (0, t - 7 (co, t)) 
At-++0 

The random process z(t), determined in that manner will be denoted by the symbol 

Z (zo (fro), 1?0? t)V and the realizations of that process by the symbol 5 (0, Zo (60)~ 

riot 1). 

2. For stochastic systems with a delay we may introduce definitions of the stability 
according to the probability, which generalize the definitions of Liapunov as it was done 
in [4] for the usual stochastic equations. Let us point out that the questions of the 

stability of usual stochastic equations were considered in 15 and 63 and others. The 
stability problem for systems with random delay has been considered by Lidskii [7]. 

Let us introduce for the completion of the exposition a few definitions analogous to 

the corresponding ideas of paper [7]. 

Let us denote by the symbol 

II x (0, x0 (flo), rlo, t + 61 II(h) = 

=sup {l+(o, x0(6,), To, t +*)I, i =I ,..., n, -h<6<0> 

Definition 2.1. The solution z = 0 of the system (1.1) is probably stable, if for any 
arbitrary small numbers E > 0, p > 0 one may find a number 6> 0, such that for any 
motion of the system (1.1) the following inequality is satisfied: 

p i[;;++& 5:l (60)~ q’, t + @/t’h’l <&1/1xJ (~,,)~]‘h’<~}> 1 --p (2.11 

If, further&e, for any number x > 0, q > 0 and any arbitrary initial conditions 
( z. (6,). qo] one may find a number T > 0, such that 

p {IF”, IIX (W 50 WI,), %, t + 6) Il’h’l < r> > 1 - q 

then the solution z = cis probably asymptotically stable. 
(2.2) 

For stochastic systems with a delay, we may develop a stability theory analogous to 
Liapunov’s second method. Particularly the following statement is valid. 

Theorem 2.1. If for Eqs. (1.1) there is a functional W[r(@, 71 positive definite for 
all T]E[O, h] and h aving an infinitely small upper limit uniformly with respect to q and 
the quantity 

EAM{W) = 
At-++0 

At 

= AKyo& [M{W[z(so(60), 111, At), v(+, At)1 jxo(f?J, q(o) = %I- 

- w [x0 PO), 1101 I 
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is negative definite,then the solution x = 0 of the system (1.11 is probably asymptotically 

stable. 

Here M(‘$] B 1 is the conditional mathematical expectation of the quantity $; the 

expression% (AM { IV )/At) re p resents the averaged higher derivative of the functional 

V[ x (61, 71 on the basis of the system (1.11 and satisfies the inequality 

where lim (A W/At), is computed for”a fixed value of 7. 

The proof of this statement is made along the same lines as the proof of the correspon- 

ding theorem for stochastic systems without delay [4] as long as the process has Markov 

properties in the space of the elements of the trajectory ( x (0, t + fi), ‘7 (0, t) 1, 6 E 

[O, h]. Let us note that Theorem (2.1) remains also valid when the functional W[ x(e), II’] 
has first order discontinuities in 7. 

Together with the system (1.11 let us consider Eqs. 

ds(t) / dt = AZ (t) + Bz (t - E) (2.4) 
where 5 is a constant delay, c fZ [O, h]. We shall d enote the solution of the system (2.41 

for a fixed value of the delay 4‘ by the symbol 

2 (50 PO)> E, t + fl)O 

Let for some value t= 59 the undisturbed motion x = 0 of the system 

&x(t) / c2t = AZ (t) + Bx (t - E") (2.5) 
be stable, and assume that for any motion of Eqs. (2.51 there are constants a > 0, B i > 0 

such that the ineqnality 

is valid. 
I 2 (G, (oo), E”, t + fi)’ ]I chl < B1 II xo (60) 11 thl@ (2.61 

It is then simple to show that forr>,tO >/2h the relation 

(1 z (z. (to + 6,), G”, t _I- fi)O 11 (fi) < B, 11 x0 (to + SO) II fahl exP (-a (t - &I)) 
where 

II x (t + I?) 11 (zh) = sup (I xi (t + S)l, i = I,..., n; --82 f 6 < 01 

B2 = B1 (1 + e-ah) 
is satisfied for the trajectories of the system (2.5). 

It is known that for that condition we can construct a functional 

the trajectories of the system (2.5), the inequalities [9] 

c1 11 x (8) ll (2h) < Tr [x (6) I < c2 II x (6) II 2h 

(2h) 

V [ x (S)] satisfying, on 

(2.7). 

l I’ [x” (S)l - v Ix’ @)I I,< c4 11 z” (6) - 5’ (fqpQ 

where ct to c, are positive constants. The functional V[ x (811 can be chosen in the form 

ta+a;+T 

Tr 120 (@,)I = 
s 

1) r (zo (G.o), r;“, z + -W 1)(2h) dr + 

+ sup { II 2 x0 ( fro), %6: f + v ll(2h) t,,<z\(t, f2h-k T) (2.8) 

6, > 2h, T=bn2Bz 
3. We shall show sufficient conditions limiting tht random delay q(:) and for which the 

stability of the system (2.5) and the property (2.6) assure the asymptotic stability according 
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to the probability of the unperturbed motion of Eqs. (1.1). For that purpose we shall take 

some sufficiently small number y > 0 and we shall consider the functional W[X (61, q] 

determined by Eqs. [8] 

Wl~V+), rl= ( 
V [x (a)] for Iri - 47 < YV n E CO, hl 

2v [x (a)] for In- E”i > 7, a E fO,bl (3.1) 

The functional W[x (61,111 is obviously positive definite for all 9 E [ 0, h] and 

accepts an infinitely smell upper limit uniformly in v. We shail estimate the quantity 

z &!$Ai( W )/&_I along the trajectories of the system (1.1). Let us consider for to > 2h, 

on the time interval [to, to+ At], the trajectories of the systems (1.1) and (2.4) such 

that the initial curves xo (to + 6,) coincide on the interval [to - 2h, to]. 
Then in agreement with the inequality (2.3) we have the estimates 

lim qp$ ;F+,(q + v [so (&)I 
Af-+O 

1 4am5 PI 
I 8--E” I a (3.2) 

for 

rl Go) = V, I rl” - YI<r, r1*E: K4~h1, z(to ++,I =%Po) 
Here lim (A V/A t) ,,a is computed on the basis of the system (2.4) for a fixed value 

c= q”. Let us estimate this quantity. We have 

- 2 (~0 (eo), 5”, to $ At + 6)” fzh) (3.3) 

For the system (2.4) we can get a constant K > 0 such, that the following inequality is 

valid: 

\( K I/ 20 (@,I llfzh) t rj* - E” i < KY Jl 50 PO) tl(2’ft (3.41 
Taking (2.7) and (3.4) into consideration, we get for the quantity (3.2) for 1 q”- e1 < 

< y, the following estimate: 

lim @?&$% I--- c3 + Kp4 + c3Q1(rl")l[Izo(60)11'2h) 
AtA+0 

kh (Iln) = . 

s 

43Q @lo, P,) 

lb-4 is=7 (3.5) 

By an analogous reasoning when 11’ - PI >/y we can get the ineqnality 

lim 
Af-+O 

q < [-- 2Cs + 2Khc4 - c1Qz (q”) J uzo (6,) n’“’ 

(Qa(~*) = ,8 iSjird~m=. R) 
-0 (3.6) 

Bow for an asymptotic stability accordfng to thsprobability of the system (1.1) it ia 
aQfficient to require that the following conditione be satisfied: 



482 l.Ia. Kats 

?-<2&, Ql (0 <z 9 
Qz (q) > 2 (Kh;: - 4 

(3.7) 

Thus the following statement is proven 

Theorem 3.1. If the system (2.5) is stable, and the condition (2.6) is satisfied for 

some fixed value of the delay to= [, then we can find some positive constants N,, N, 

such, that when the conditions 

Q1 (17') ~-1 Xl for 1 vj' - &' 1 <I', '11" E [CA h] 

Qz (rl@) iN, for 1 rf -- go 1 > Y, rl” E lo, hl (3.8) 

are satisfied, the motion x = 0 of the system (1.1) is probably asymptotically stable. 

N o t e 3.1. The probability meaning of the quantities Qt (TO) and Qz (7’) is discerned 

from the equalities 

~~I~(~+A~~-~~I~~I~(~~=~~~I~~-E~I<~~ =Q,(~“)~t+o(~t~ 

~{W+W - E”I<~h(t) =rlo7 IV- E”l h?= Q,(T)A~+o(A~) 
which are consequences of (3.5) and (3.6). Consequently, the proven theorem means that 

random changes in the delay cannot affect a sufficiently strong system etability if 

the probability of a change from small values of the delay to large ones is small during 

the time At, and if the probability of the opposite changes is sufficiently large. 

The author thanks N.N. Krasovskii for his valuable comments. 
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